New Cramer-Rao-Type Bound for Constrained Parameter Estimation
نویسندگان
چکیده
Non-Bayesian parameter estimation under parametric constraints is encountered in numerous applications in signal processing, communications, and control. Mean-squared-error (MSE) lower bounds are widely used as performance benchmarks and for system design. The well-known constrained Cramér-Rao bound (CCRB) is a lower bound on the MSE of estimators that satisfy some unbiasedness conditions. In many constrained estimation problems, these unbiasedness conditions are too strict and popular estimators, such as the constrained maximum likelihood estimator, do not satisfy them. In addition, MSE performance can be uniformly improved by implementing estimators that do not satisfy these conditions. As a result, the CCRB is not a valid bound on the MSE of such estimators. In this paper, we propose a new definition for unbiasedness in constrained settings, denoted by C-unbiasedness, which is based on using Lehmann-unbiasedness with a weighted MSE (WMSE) risk and taking into account the parametric constraints. In addition, a Cramér-Rao-type bound on the WMSE of C-unbiased estimators, denoted as Lehmann-unbiased CCRB (LU-CCRB), is derived. It is shown that in general, C-unbiasedness is less restrictive than the CCRB unbiasedness conditions. Thus, the LU-CCRB is valid for a larger set of estimators than the CCRB and C-unbiased estimators with lower WMSE than the corresponding CCRB may exist. In the simulations, we examine linear and nonlinear estimation problems under nonlinear parametric constraints in which the constrained maximum likelihood estimator is shown to be C-unbiased and the LU-CCRB is an informative bound on its WMSE, while the corresponding CCRB is not valid. Index Terms Non-Bayesian parameter estimation, mean-squared-error (MSE), parametric constraints, constrained Cramér-Rao bound (CCRB), Lehmann-unbiasedness This research was partially supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 1160/15 and grant No. 1173/16). E. Nitzan, T. Routtenberg, and J. Tabrikian are with the Department of Electrical and Computer Engineering Ben-Gurion University of the Negev Beer-Sheva 84105, Israel, e-mail: [email protected], [email protected], [email protected]. 2
منابع مشابه
Improved Cramer-Rao Inequality for Randomly Censored Data
As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...
متن کاملApproximate estimation of the Cramer-Rao Lower Bound for Sinusoidal Parameters
-In this paper we present new approximation expressions for the Cramer-Rao Lower Bound on unbiased estimates of frequency, phase, amplitude and DC offset for uniformly sampled signal embedded in white-Gaussian noise. This derivation is based on well-known assumptions and a novel set of approximations for finite series of trigonometric functions. The estimated Cramer-Rao Lower Bounds are given i...
متن کاملTarget Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks
Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...
متن کاملAchievable accuracy of parameter estimation for multidimensional NMR experiments.
A fundamental issue in NMR spectroscopy is the estimation of parameters such as the Larmor frequencies of nuclei, J coupling constants, and relaxation rates. The Cramer-Rao lower bound provides a method to assess the best achievable accuracy of parameter estimates resulting from an unbiased estimation procedure. We show how the Cramer-Rao lower bound can be calculated for data obtained from mul...
متن کاملتخمین جهت منابع با استفاده از زیرفضای کرونکر
This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.02384 شماره
صفحات -
تاریخ انتشار 2018